SAT Math Level 2 Subject Test Practice Paper 1

1. A linear function, f, has a slope of $-2 . f(1)=2$ and $f(2)=q$. Find q.
A. 0
B. $\frac{3}{2}$
\bigcirc
D. 3
E. 4
2. A function is said to be even if $f(x)=f(-x)$. Which of the following is not an even function?
A. $y=|x|$
B. $y=\sec x$
C. $y=\log x^{2}$
D. $y=x^{2}+\sin x$
E. $y=3 x^{4}-2 x^{2}+17$
3. What is the radius of a sphere, with center at the origin, that passes through point (2,3,4)?
A. 3
\bigcirc
B. 3.31

O
C. 3.32

O
D. 5.38

O
E. 5.39
4. If a point (x, y) is in the second quadrant, which of the following must be true?
I. $x<y$
II. $x+y>0$
$\frac{x}{y}<0$
III.
A. only I
B. only II
C. only III
\bigcirc
D. only I and II

O
E. only I and III
5. If $f(x)=x^{2}-a x$, then $f(a)=$
A. a
B. $a^{2}-a$
\bigcirc
C. 0

0
D. 1

O
E. a-1
6. The average of your first three test grades is 78 . What grade must you get on your fourth and final test to make your average 80 ?
O
A. 80
B. 82
\bigcirc
C. 84
D. 86
E. 88
7. $\log _{7} 9=$
A. 0.89
B. 0.95
\bigcirc
C. 1.13

O
D. 1.21
E. 7.61
8. If $\log _{2} m=x$ and $\log _{2} n=y$, then $m n=$
A. 2^{x+y}
B. $2^{x y}$

O
C. $4^{x y}$

O
D. 4^{x+y}
E. cannot be determined
9. How many integers are there in the solution set of $|x-2| \leq 5$?
A. 0
B. 7

O
C. 9
\bigcirc
D. 11

C
E. an infinite number
10. If $f(x)=\sqrt{x^{2}}$, then $f(x)$ can also be expressed as

C A. x
O
B. $-x$

O
C. $\pm x$
D. $|x|$
E. $f(x)$ cannot be determined because x is unknown.
11. The graph of $\left(x^{2}-1\right) y=x^{2}-4$ has
A. one horizontal and one vertical asymptote
B. two vertical but no horizontal asymptotes
C. one horizontal and two vertical asymptotes

0
D. two horizontal and two vertical asymptotes

C
E. neither a horizontal nor a vertical asymptote
12. $\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+4 x-5}{6 x^{2}+3 x+1}\right)=$

C A. -5
0
B. $\frac{1}{5}$

0
C. $\frac{1}{2}$
\bigcirc
D. 1

C
E. This expression is undefined.
13. A linear function has an x-intercept of $\sqrt{3}$ and a y-intercept of $\sqrt{5}$. The graph of the function has a slope of
A. -1.29
\bigcirc
B. -0.77

0
C. 0.77
\bigcirc
D. 1.29
E. 2.24
14. If $f(x)=2 x-1$, find the value of x that makes $f(f(x))=9$.

O
A. 2

C
B. 3
\bigcirc
C. 4
\bigcirc
D. 5
E. 6
15. The plane $2 x+3 y-4 z=5$ intersects the x-axis at ($a, 0,0$), the y-axis at ($0, b, 0$), and the z-axis at $(0,0, c)$. The value of $a+b+c$ is
A. 1
B. $\frac{35}{12}$

O
C. 5
D. $\frac{65}{12}$
C. 9
16. Given the set of data $1,1,2,2,2,3,3,4$, which one of the following statements is true?

C
A. mean \leq median \leq mode

C
B. median \leq mean \leq mode

C. median \leq mode \leq mean

0
D. mode \leq mean \leq median
E. The relationship cannot be determined because the median cannot be calculated.
17. If $\frac{x-3 y}{x}=7$, what is the value of $\frac{x}{y}$?
A. $-\frac{8}{3}$

C
B. -2

C
C. $-\frac{1}{2}$

0
D. $\frac{3}{8}$
E. 2
18. Find all values of x that make $\left(\begin{array}{lll}3 & 0 & 5 \\ 4 & 1 & 6\end{array}\right)=\left(\begin{array}{ll}x & 4 \\ 5 & x\end{array}\right)$

O
A. 0

0
B. ± 1.43
\bigcirc
C. ± 3
\bigcirc
D. ± 4.47
\bigcirc
E. 5.34
19. Suppose $f(x)=\frac{1}{2} x^{2}-8$ for $-4 \leq x \leq 4$, then the maximum value of the graph of $|f(x)|$ is
(A. -8
O
B. 0
C. 2
D. 4

C
E. 8
20. If $\tan \theta=\frac{2}{3}$, then $\sin \theta=$
A. ± 0.55
B. ± 0.4

O
C. 0.55

0
D. 0.83

O
E. 0.89
21. If a and b are the domain of a function and $f(b)<f(a)$, which of the following must be true?
©
A. $a<b$
B. $b<a$
C. $a=b$

C
D. $a \neq b$
E. $a=0$ or $b=0$
22. Which of the following is perpendicular to the line $y=-3 x+7$?
A. $y=\frac{1}{-3 x+7}$

O
B. $y=7 x-3$

O
C. $y=\frac{1}{3} x+5$
$\mathrm{CD.}^{y=-\frac{1}{3} x+7}$
C
E. $y=3 x-7$
23. The statistics below provide a summary of IQ scores of 100 children.

Mean: 100
Median: 102
Standard Deviation: 10
First Quartile: 84
Third Quartile: 110
About 50 of the children in this sample have IQ scores that are
C
A. less than 84

0
B. less than 110

O
C. between 84 and 110

O
D. between 64 and 130

O
E. more than 100
24. If

$$
f(x)=\frac{1}{\sec x}, \text { then }
$$

A. $f(x)=f(-x)$
B. $f\left(\frac{1}{x}\right)=-f(x)$

O
C. $f(-x)=-f(x)$

0
$f(x)=f\left(\frac{1}{x}\right)$
E. $f(x)=\frac{1}{f(x)}$
25. The polar coordinates of a point P are $\left(2,240^{\circ}\right)$. The Cartesian (rectangular) coordinates of P are
A. $(-1,-\sqrt{3})$
B. $(-1, \sqrt{3})$
C. $(-\sqrt{3},-1)$
D. $(-\sqrt{3}, 1)$
E. $(1,-\sqrt{3})$

